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A new version of ECBr has been completed that allows nonuniform grid 
spacing and a new dieledric boundary condition. ECB was developed to re- 
tain the simplicity and speed of an orthogonal mesh while capturing much of 
the fidelity of adaptive, unstructured finite element meshes. Codes based on 
orthogonal meshes are easy to work with and lead to well-posed elliptic and 
parabolic problems that are comparatively easy to solve. Generally, othogonal 
mesh representations lead to banded matrices while unstructured representa- 
tions lead to more complicated sparse matrices. Recent advances in adapting 
banded linear systems to massively parallel computers reinforce our opinion 
that iterative field solutions utilizing banded matrix methods will continue to 
be competitive2. Unfortunately, the underlying “stair-step” boundary repre- 
sentation in simple orthogonal mesh (and recent Adaptive Mesh Refinement) 
applications is inadequate. With ECB, the curved boundary is represented by 
piece-wise-linear representations of curved internal boundaries embedded into 
the orthogonal mesh- we build better, but not more, coefficients in the vicin- 
ity of these boundaries-and we use the surplus free energy on more ambitious 
physics models. 

ECB structures are constructed out of the superposition of analytically pre- 
scribed building blocks. In 2-D, we presently use a POLY4 (linear boundaries 
defined by 4 end points), an ANNULUS, (center, inner & outer radii, starting & 
stopping angle), a ROUND (starting point & angle, stopping point & angle, fil- 
let radius). A link-list AIRFOIL has also been constructed. In the ECB scheme, 
we first find each intercept of the structure boundary with an I or J grid line is 
assigned an index K. We store the actual z,y value at the intercept, and the 
slope of the boundary at that intercept, in arrays whose index K is associated 
with the corresponding mesh point just inside the structure. In 2-D, a point 
just outside a structure may have up to 4 intercepts associated with it. We now 
construct PieceWise Linear Segments (PWLS)-from the slope and intercept- 
that will serve as the computational boundary-a boundary constructed as a 
superposition of the analytic elements given as input. 

The intersection of these PWLSs with other nearby PWLSs define the end- 
points. We insist that there be an endpoint within each cell for each sequence 
of PWLSs coming through that cell. We give directionality to a PWLS by the 
convention that looking from point 1 to point 2 will place the interior of the 
structure on the left. This scheme allows the generalization to those bound- 
ary structures that do not actually have any mesh points inside a structureI. 
Since these structures are defined by their analytically defined bounding walls, 
points can always be found that are “inside” a given wall segment-even though 
it may, in fact, be outside the opposite bounding segment. Such subgrid geome- 
try is useful, for example, in a gun configuration with a thin electrode, perhaps 
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not parallel to any axes of the orthogonal mesh, in which the electrode simply 
contributes to an external focusing field. 

ECB Coefficients for Elliptic Equations 

For simplicity, we consider a ID Poisson equation. The equation is 

d E 3s 
si+l-s 
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-is-= (A,, + A,)/2 m = -’ 

where &,=xi - xi-l, Ap=zi+l - xi, and tlrL=(~i + ~~+r) /2, tp=(ci+r + ei) /2. 
Defining A 3 (A,, + A,)/2, 

$$/A,A - S [cp/Ap + t,,lA,] /A + ~w%lA,nA = -P , (1) 
we first form and store coefhcients for all points I as if there were no boundaries, 
then redefine “smarter” coefficients that describe the boundary constraints at 
those points just outside of a structure. 

Dirichlet Boundary Conditions 

Consider a location i just outside of (below) a structure intercept 
&I 

5’ 1 ‘,I L P’ $.I-j 
For Dirichlet boundary conditions,‘we’speci:y the value B at that intercept Lyi 
by using (I) as if it had a closer mesh point for the i + 1 location 

Si = B, t(B - S)/b,A - t,,(S - S,,)/A,,A = -p 

The coefficients for a tridiagonal matrix at points i and i + 1 (and all other 
interior points) are 

i i + 1, intel-io1 
__------ 

sp : 0 
s (,,$L,an+ GpN 1 

S m: GJA,A 0 
rhs : -p - tB&,A B 

(2) 

Dielectric Boundary Conditions 

Consider again the location i just outside of (below) a structure intercept. 
We wish to impose the first-order dielectric condition 
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where ~~1, t are evaluated at points i + 1 and i. We now solve for Si and use 
it with (l), again as if it had a shorter leg in the templet. Solving for S’i and 
plugging into (1) gives 

~i+l&!$ + (~~-cJc&) (A, - 6,) 
AED 

- ES 1 &A - t,,(S - S’m,)/A,,,A = -p 

where ~AED E [ti+rS, + t (A, - &)I The equations simplifies leading to coef- 
ficients 

i if1 
------ 

s, : G+I/AEDA c;/A;A’ 
s - [G+I/AED + 4A,,,] /A - [~;/a; + (I-,/AL,] /A’ (4 

sn, : ~,,/A, A E:- l/AkDA’ 

7’hS : -p+w + I +&in) 
A&A' 

where c’A~~ E 1 tipI 6’ In + t’ (A:,, - s:,,)] and the other ’ coefficients have anal- 
ogous definitionsL when viewed from thi ‘i + 1 point. The full, umnodified co- 
efficients are solved in the interior of the dielectric The generalization to 2D 
is quite straightforward, leading to the introduction of a simple cosine of the 
intercept of the PWLS into the effective surface charge. The construction of the 
gradients is more tedious but also straightforward and is described in Ref 1 

An example of this dielectric condition is shown the contour plot below. S 
lines tend to be compressed in regions with E < 1 and excluded from regions 
where t is large Dielectric boundary conditions on the ECB interfaces. On the 
left and right are Neumann zero boundary conditions while Dirichlet boundary 
conditions are used on the top (S=constant) and bottom (S=O). Notice that 
the solution is better than the contour plotter; the solution is computed on the 
mesh points using the precise location of the boundary intercept; the contour 
plotter interpolates only between mesh points 
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